jueves, 4 de julio de 2013

Videoconferencia

o videollamada es la comunicación simultánea bidireccional de audio y vídeo, que permite mantener reuniones con grupos de personas situadas en lugares alejados entre sí. Adicionalmente, pueden ofrecerse facilidades telemáticas o de otro tipo como el intercambio de gráficos, imágenes fijas, transmisión de ficheros desde el ordenador, etc. El núcleo tecnológico usado en un sistema de videoconferencia es la compresión digital de los flujos de audio y vídeo en tiempo real. Su implementación proporciona importantes beneficios, como el trabajo colaborativo entre personas geográficamente distantes y una mayor integración entre grupos de trabajo.

Historia


Analogías simples de videoconferencias se pueden rastrear en épocas de la invención de la televisión. Estos sistemas de videoconferencia por lo general se componían de dos sistemas de Circuito cerrado de televisión conectados a través de cable coaxial o radio. Un ejemplo de ello fue la red del Postzentralamt Reich (oficina de correo) alemán, creada en Berlín y otras ciudades desde 1936 hasta 1940. Durante los primeros vuelos espaciales tripulados, la NASA utilizó dos enlaces de radiofrecuencia (UHF o VHF), uno en cada dirección. También los canales de televisión utilizaban habitualmente este tipo de videoconferencia para informar desde lugares distantes. Luego los enlaces móviles a los satélites por medio de camiones especialmente equipados se convirtió en algo común.

Esta técnica era muy costosa y no podían ser utilizada en aplicaciones como la telemedicina, educación a distancia o reuniones de negocios. Los intentos de utilizar las redes de telefonía normal para transmitir vídeo de exploración lenta, como los primeros sistemas desarrollados por AT&T, no funcionaron, debido a la mala calidad de imagen y la falta de técnicas eficientes de compresión de vídeo.

No fue hasta la década de 1980 que las redes digitales de transmisión de telefonía se hizo posible, como RDSI, asegurando una velocidad mínima (por lo general 128 kilobits/s) para vídeo comprimido y transmisión de audio. Durante este tiempo, hubo también investigaciones sobre otras formas de vídeo digital y comunicación de audio. Muchas de estas tecnologías, como "media space", no son tan utilizados en la actualidad como la videoconferencia, pero fueron un área importante de investigación. Los primeros sistemas dedicados comenzaron a aparecer en el mercado al mismo tiempo que las redes de RDSI se expandían en el mundo. Uno de los primeros sistemas comerciales de Videoconferencia vendido a las empresas provino de PictureTel Corp. que tuvo una oferta pública inicial en noviembre de 1984. Los sistemas de videoconferencia en los 90' evolucionaron rápidamente de costosos equipos de propiedad, software y requisitos de red a una tecnología de base normal a disposición del público en general a un costo razonable.

Finalmente, en la década de 1990, la videoconferencia basada en IP (Internet Protocol) se hizo posible, y se desarrollaron tecnologías de compresión de vídeo más eficaces , permitiendo videoconferencias desde el escritorio o computadora personal (PC). En 1992, CU-SeeMe fue desarrollada en Cornell por Tim Dorcey et al. En 1995 Intel y Microsoft trabajan juntos para una estandarización inicial de actividades para sistemas de comunicación de VoIP. En ese mismo año la primera videoconferencia pública y emisión de paz entre los continentes de América del Norte y África tuvo lugar, vinculando una feria tecnológica en San Francisco con un techno-rave y cyberdeli en Ciudad del Cabo. En la ceremonia de apertura de los Juegos Olímpicos de Invierno en Nagano, Japón, Seiji Ozawa llevó a cabo la Oda a la Alegría de la Novena Sinfonía de Beethoven simultáneamente en los cinco continentes en tiempo casi real.

En la década del 2000, la videotelefonía se popularizó a través de servicios de Internet gratuitos como Skype o iChat, programas de telecomunicaciones en línea que promueve la videoconferencia a prácticamente todas las localidades con conexión a Internet. En mayo de 2005, los primeros sistemas de alta definición de video conferencia, producidos por LifeSize Communications, fueron exhibidos en la feria Interop en Las Vegas, Nevada, capaz de proporcionar 30 fotogramas por segundo a una resolución de pantalla 1280 x 720. En la actualidad, resolución de alta definición se ha convertido en una característica estándar, siendo ofrecida por la mayoría de los proveedores importantes en el mercado de la videoconferencia. 

Tecnología

La tecnología básica utilizada en sistemas de videoconferencia es la compresión digital de audio y vídeo en tiempo real. El hardware o software que realiza la compresión se llama codec (codificador / decodificador). Se pueden lograr tasas de compresión de hasta 1:500. El flujo digital resultante de 1s y 0s se divide en paquetes etiquetados, que luego se transmiten a través de una red digital (por lo general ISDN o IP).

Hay, básicamente, dos tipos de sistemas de videoconferencia:

1- Sistemas de videoconferencia dedicados : Posee todos los componentes necesarios empaquetados en un solo equipo, por lo general una consola con una cámara de vídeo de alta calidad controlada por un control remoto. Hay varios tipos de dispositivos de videoconferencia dedicada:
  • Videoconferencia para grandes grupos: son dispositivos grandes , no portátiles, más costosos utilizados para grandes salas y auditorios.
  • Videoconferencia para grupos pequeños: no son portátiles, son más pequeños y menos costosos, utilizados para salas de reuniones pequeñas.
  • videoconferencia individuales son generalmente dispositivos portátiles, destinados a usuarios individuales, tienen cámaras fijas, micrófonos y altavoces integrados en la consola.

2- Sistemas de escritorio: Los sistemas de escritorio son complementos –add-ons-(Por lo general tarjetas de hardware) a los PC normales, transformándolas en dispositivos de videoconferencia. Una gama de diferentes cámaras y micrófonos pueden ser utilizados con la tarjeta, que contiene el codec e interfaces de transmission necesarias. La mayoría de los sistemas de escritorios trabajan estándar H.323. Las Videoconferencias realizadas a través de ordenadores dispersos son también conocidos como e-meetings.

Videoconferencia en la educación

Esta técnica hace inclusión de un nuevo concepto propia de la enseñanza concepto de espacio educativo en el que se superan las barreras de la separación física a distancia; dando lugar por lo tanto a nuevas formas de organización, metodologías e interacciones. El uso de las videoconferencias por parte de profesores y alumnos suponen beneficios, para las entidades educativas.

- Ahorro de costos evita desplazamientos y gastos en viáticos.
- Intercambio de ideas , conocimientos e información.
- Aumento en productividad y ventaja competitiva entre los usuarios de este medio tecnológico
- Una alternativa adicional para el mejor aprovechamiento de los recursos de computo
- Reunir académicos situados en diferentes lugares geográficos.
- Planear estrategias de investigación y cooperación.

Es muy importante la motivación de los alumnos, informarles de la experiencia a que van a ser sometidos:, cuáles van a ser los medios técnicos, las materias, la duración, los participantes en la experiencia la cual contempla un período previo de selección materias y de estudio conjunto de metodología, así como del material pedagógico más adecuado para acompañar la clase (apuntes, vídeo...) La anterior nos ayuda a reflexionar y a multiplicar los diversos beneficios de la videoconferencia en la educación, además esto significará para el docente innovador, cambios en sus metodologías e imprescindible ser portador de la competencia tecnológica.

Dispositivos de Almacenamiento

Los dispositivos o unidades de almacenamiento de datos son componentes que leen o escriben datos en medios o soportes de almacenamiento, y juntos conforman la [Almacenamiento secundario memoria o almacenamiento secundario]. Estos dispositivos realizan las operaciones de lectura o escritura de los medios o soportes donde se almacenan o guardan, lógica y físicamente, los archivos de un sistema informático.


Dispositivos de almacenamiento:

Disco duro:


Los discos duros tienen una gran capacidad de almacenamiento de información, pero al estar alojados normalmente dentro de la computadora (discos internos), no son extraíbles fácilmente. Para intercambiar información con otros equipos (si no están conectados en red) se tienen que utilizar unidades de disco, como los disquetes, los discos ópticos (CD, DVD), los discos magneto-ópticos, memorias USB o las memorias flash, entre otros. El disco duro almacena casi toda la información que manejamos al trabajar con una computadora. En él se aloja, por ejemplo, el sistema operativo que permite arrancar la máquina, los programas, archivos de texto, imagen, vídeo, etc. Dicha unidad puede ser interna (fija) o externa (portátil), dependiendo del lugar que ocupe en el gabinete o caja de computadora.


Un disco duro está formado por varios discos apilados sobre los que se mueve una pequeña cabeza magnética que graba y lee la información. Este componente, al contrario que el micro o los módulos de memoria, no se pincha directamente en la placa, sino que se conecta a ella mediante un cable. También va conectado a la fuente de alimentación, pues, como cualquier otro componente, necesita energía para funcionar. Además, una sola placa puede tener varios discos duros conectados.

Las características principales de un disco duro son:
  • Capacidad: Se mide en gigabytes (GB). Es el espacio disponible para almacenar secuencias de 1 byte. La capacidad aumenta constantemente desde cientos de MB, decenas de GB, cientos de GB y hasta TB.
  • Velocidad de giro: Se mide en revoluciones por minuto (RPM). Cuanto más rápido gire el disco, más rápido podrá acceder a la información la cabeza lectora. Los discos actuales giran desde las 4.200 a 15.000 RPM, dependiendo del tipo de ordenador al que estén destinadas.
  • Capacidad de transmisión de datos: De poco servirá un disco duro de gran capacidad si transmite los datos lentamente. Los discos actuales pueden alcanzar transferencias de datos de 3 GB por segundo.
También existen discos duros externos que permiten almacenar grandes cantidades de información. Son muy útiles para intercambiar información entre dos equipos. Normalmente se conectan al PC mediante un conector USB. Cuando el disco duro está leyendo, se enciende en la carcasa un LED (de color rojo, verde u otro). Esto es útil para saber, por ejemplo, si la máquina ha acabado de realizar una tarea o si aún está procesando datos.


Disquetera



La unidad de 3,5 pulgadas permite intercambiar información utilizando disquetes magnéticos de 1,44 MB de capacidad. Aunque la capacidad de soporte es muy limitada si tenemos en cuenta las necesidades de las aplicaciones actuales se siguen utilizando para intercambiar archivos pequeños, pues pueden borrarse y reescribirse cuantas veces se desee de una manera muy cómoda, aunque la transferencia de información es bastante lenta si la comparamos con otros soportes, como el disco duro o un CD-ROM.


Para usar el disquete basta con introducirlo en la ranura de la disquetera. Para expulsarlo se pulsa el botón situado junto a la ranura, o bien se ejecuta alguna acción en el entorno gráfico con el que trabajamos (por ejemplo, se arrastra el símbolo del disquete hasta un icono representado por una papelera). La unidad de disco se alimenta mediante cables a partir de la fuente de alimentación del sistema. Y también va conectada mediante un cable a la placa base. Un diodo LED se ilumina junto a la ranura cuando la unidad está leyendo el disco, como ocurre en el caso del disco duro.

En los disquetes solo se puede escribir cuando la pestaña esta cerrada. Cabe destacar que el uso de este soporte en la actualidad es escaso o nulo, puesto que se ha vuelto obsoleto teniendo en cuenta los avances que en materia de tecnología se han producido.


Unidad de CD-ROM o "DVDs"


La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas: hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han trnsformado en el estándar para distribuir sistemas operativos, aplicaciones, etc. El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.

Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando de nuevo el botón, la bandeja se introduce.En estas unidades, además, existe una toma para auriculares, y también pueden estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo. Una característica básica de las unidades de CD-ROM es la velocidad de lectura, que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.

Unidad de CD-RW (regrabadora) o "grabadora"
Una regrabadora puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En los discos regrabables es normalmente menor que en los discos que sólo pueden ser grabados una vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 o más megabytes (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).


Unidad de DVD-ROM o "lectora de DVD"


Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM.ian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s. Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimeonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).

Unidad de DVD-RW o "grabadora de DVD"


Puede leer y grabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.

Unidad de disco magneto-óptico


La unidad de discos magneto-ópticos permiten el proceso de lectura y escritura de dichos disíbrida de los disquetes y los discos ópticos, aunque en entornos domésticos fueron menos usadas que las disqueteras y las unidades de CD-ROM, pero tienen algunas ventajas en cuanto a los disquetes:
  • Por una parte, admiten discos de gran capacidad: 230 MB, 640 Mb o 1,3 GB.
  • Además, son discos reescribibles, por lo que es interesante emplearlos, por ejemplo, para realizar copias de seguridad.

Lector de tarjetas de memoria


El lector de tarjetas de memorieriférico que lee o escribe en soportes de memoria flash. Actualmente, los instalados en computadores (incluidos en una placa o mediante puerto USB), marcos digitales, lectores de DVD y otros dispositivos, suelen leer varios tipos de tarjetas. Una tarjeta de memoria es un pequeño soporte de almacenamiento que utiliza memoria USB para guardar la información que puede requerir o no baterías (pilas), en los últimos modelos la batería no es requerida, la batería era utilizada por los primeros modelos. Estas memorias son resistentes a los rasguños externos y al polvo que han afectado a las formas previas de almacenamiento portátil, como los CD y los disquetes.

Otros dispositivos de almacenamiento


Otros dispositivos de almacenamiento son las memorias flash o los dispositivos de almacenamiento magnéticos de gran capacidad.
  • Cinta perforada: se trata de un medio muy obsoleto, consistente en tarjetas o cintas de papel perforadas.
  • Memoria flash: es un tipo de memoria que se comercializa para el uso de aparatos portátiles, como cámaras digitales o agendas electrónicas. El aparato correspondiente o bien un lector de tarjetas, se conecta a la computadora a través del puerto USB o Firewire.
  • Discos y cintas magnéticas de gran capacidad: son unidades especiales que se utilizan para realizar copias de seguridad o respaldo en empresas y centros de investigación. Su capacidad de almacenamiento puede ser de cientos de gigabytes.
  • Almacenamiento en línea: hoy en día también debe hablarse de esta forma de almacenar información. Esta modalidad permite liberar espacio de los equipos de escritorio y trasladar los archivos a discos rígidos remotos provistos que garantizan normalmente la disponibilidad de la información. En este caso podemos hablar de dos tipos de almacenamiento en línea: un almacenamiento de corto plazo normalmente destinado a la transferencia de grandes archivos vía web; otro almacenamiento de largo plazo, destinado a conservar información que normalmente se daría en el disco rígido del ordenador personal.

Restauración de datos


La información almacenada en cualquiera de estos dispositivos debe de disponer de algún mecanismo para restaurar la información, es decir restaurar la información a su estado original en caso de que algún evento no nos permita poder acceder a la información original, siendo necesario acudir a la copia que habíamos realizado anteriormente. Para esta restauración de datos existen diferentes métodos, desde un simple copiar pasando por comando como el "copy" de DOS, el "cp" de sistemas Linux y Unix, o herramientas de diversos fabricantes.En informática la información se mide a través de diferentes términos.

Recuperación de datos


Recuperación de datos es el proceso de restablecer la información contenida en dispositivos de almacenamiento secundarios dañados, defectuosos, corruptos, inaccesibles o que no se pueden acceder de forma normal. A menudo la información es recuperada de dispositivos de almacenamiento tales como discos duros, cintas, CD, DVD, RAID y otros dispositivos electrónicos. La recuperación puede ser debido a un daño físico en el dispositivo de almacenamiento o por un daño lógico en el sistema de archivos que evita que el dispositivo sea accedido desde el sistema operativo.

Bus de Memoria

En arquitectura de computadores, el bus (o canal) es un sistema digital que transfiere datos entre los componentes de una computadora o entre computadoras. Está formado por cables o pistas en un circuito impreso, dispositivos como resistores y condensadores además de circuitos integrados. En los primeros computadores electrónicos, todos los buses eran de tipo paralelo, de manera que la comunicación entre las partes del computador se hacía por medio de cintas o muchas pistas en el circuito impreso, en los cuales cada conductor tiene una función fija y la conexión es sencilla requiriendo únicamente puertos de entrada y de salida para cada dispositivo.

La tendencia en los últimos años se hacia uso de buses seriales como el USB, Firewire para comunicaciones con periféricos reemplazando los buses paralelos, incluyendo el caso como el del microprocesador con el chipset en la placa base. Esto a pesar de que el bus serial posee una lógica compleja (requiriendo mayor poder de cómputo que el bus paralelo) a cambio de velocidades y eficacias mayores. Existen diversas especificaciones de que un bus se define en un conjunto de características mecánicas como conectores, cables y tarjetas, además de protocolos eléctricos y de señales.

Funcionamiento

La función del bus es la de permitir la conexión lógica entre distintos subsistemas de un sistema digital, enviando datos entre dispositivos de distintos órdenes: desde dentro de los mismos circuitos integrados, hasta equipos digitales completos que forman parte de supercomputadoras. La mayoría de los buses están basados en conductores metálicos por los cuales se trasmiten señales eléctricas que son enviadas y recibidas con la ayuda de integrados que poseen una interfaz del bus dado y se encargan de manejar las señales y entregarlas como datos útiles. Las señales digitales que se trasmiten son de datos, de direcciones o señales de control.

Los buses definen su capacidad de acuerdo a la frecuencia máxima de envío y al ancho de los datos. Por lo general estos valores son inversamente proporcionales: si se tiene una alta frecuencia, el ancho de datos debe ser pequeño. Esto se debe a que la interferencia entre las señales (crosstalk) y la dificultad de sincronizarlas, crecen con la frecuencia, de manera que un bus con pocas señales es menos susceptible a esos problemas y puede funcionar a alta velocidad. Todos los buses de computador tienen funciones especiales como las interrupciones y las DMA que permiten que un dispositivo periférico acceda a una CPU o a la memoria usando el mínimo de recursos.

Primera generación


Los primeros computadores tenían 2 sistemas de buses, uno para la memoria y otro para los demás dispositivos. La CPU tenía que acceder a dos sistemas con instrucciones para cada uno, protocolos y sincronizaciones diferentes. La empresa DEC notó que el uso de dos buses no era necesario si se combinaban las direcciones de memoria con las de los periféricos en un solo espacio de memoria (mapeo), de manera que la arquitectura se simplificaba ahorrando costos de fabricación en equipos fabricados en masa, como eran los primeros minicomputadores.

Los primeros microcomputadores se basaban en la conexión de varias tarjetas de circuito impreso a un bus Backplane pasivo que servía de eje al sistema. En ese bus se conectaba la tarjeta de PU que realiza las funciones de árbitro de las comunicaciones con las demás tarjetas de dispositivo conectadas; las tarjetas incluían la memoria, controladoras de diskette y disco, adaptadores de vídeo. La CPU escribía o leía los datos apuntando a la dirección que tuviera el dispositivo buscado en el espacio único de direcciones haciendo que la información fluyera a través del bus principal. Entre las implementaciones más conocidas, están los buses Bus S-100 y el Bus ISA usados en varios microcomputadores de los años 70 y 80. En ambos, el bus era simplemente una extensión del bus del procesador de manera que funcionaba a la misma frecuencia. Por ejemplo en los sistemas con procesador Intel 80286 el bus ISA tenía 6 u 8 megahercios de frecuencia dependiendo del procesador.

Segunda generación



El hecho de que el bus fuera pasivo y que usara la CPU como control, representaba varios problemas para la ampliación y modernización de cualquier sistema con esa arquitectura. Además que la CPU utilizaba una parte considerable de su potencia en controlar el bus. Desde que los procesadores empezaron a funcionar con frecuencias más altas, se hizo necesario jerarquizar los buses de acuerdo a su frecuencia: se creó el concepto de bus de sistema (conexión entre el procesador y la RAM) y de buses de expansión, haciendo necesario el uso de un chipset.


El bus ISA utilizado como backplane en el PC IBM original pasó de ser un bus de sistema a uno de expansión, dejando su arbitraje a un integrado del chipset e implementando un bus a una frecuencia más alta para conectar la memoria con el procesador. En cambio, el bus Nubus era independiente desde su creación, tenía un controlador propio y presentaba una interfaz estándar al resto del sistema, permitiendo su inclusión en diferentes arquitecturas. Fue usado en diversos equipos, incluyendo algunos de Apple y se caracterizaba por tener un ancho de 32 bits y algunas capacidades Plug and Play (autoconfiguración), que lo hacían muy versátil y adelantado a su tiempo. Entre otros ejemplos de estos buses autónomos, están el AGP y el bus PCI.

Tercera generación


Los buses de tercera generación se caracterizan por tener conexiones punto a punto, a diferencia de los buses arriba nombrados en los que se comparten señales de reloj. Esto se logra reduciendo fuertemente el número de conexiones que presenta cada dispositivo usando interfaces seriales. Entonces cada dispositivo puede negociar las características de enlace al inicio de la conexión y en algunos casos de manera dinámica, al igual que sucede en las redes de comunicaciones. Entre los ejemplos más notables, están los buses PCI-Express, el Infiniband y el HyperTransport.


Tipos de bus

Existen dos grandes tipos clasificados por el método de envío de la información: bus paralelo o bus serie. Hay diferencias en el desempeño y hasta hace unos años se consideraba que el uso apropiado dependía de la longitud física de la conexión: para cortas distancias el bus paralelo, para largas el serial.


Bus paralelo


Es un bus en el cual los datos son enviados por bytes al mismo tiempo, con la ayuda de varias líneas que tienen funciones fijas. La cantidad de datos enviada es bastante grande con una frecuencia moderada y es igual al ancho de los datos por la frecuencia de funcionamiento. En los computadores ha sido usado de manera intensiva, desde el bus del procesador, los buses de discos duros, tarjetas de expansión y de vídeo, hasta las impresoras.

El front-side bus de los procesadores Intel es un bus de este tipo y como cualquier bus presenta unas funciones en líneas dedicadas:
  • Las líneas de dirección son las encargadas de indicar la posición de memoria o el dispositivo con el que se desea establecer comunicación.
  • Las líneas de control son las encargadas de enviar señales de arbitraje entre los dispositivos. Entre las más importantes están las líneas de interrupción, DMA y los indicadores de estado.
  • Las líneas de datos transmiten los bits de forma aleatoria de manera que por lo general un bus tiene un ancho que es potencia de 2.
Un bus paralelo tiene conexiones físicas complejas, pero la lógica es sencilla, que lo hace útil en sistemas con poco poder de cómputo. En los primeros microcomputadores, el bus era simplemente la extensión del bus del procesador y los demás integrados "escuchan" las línea de direcciones, en espera de recibir instrucciones. En el PC IBM original, el diseño del bus fue determinante a la hora de elegir un procesador con I/O de 8 bits (Intel 8088), sobre uno de 16 (el 8086), porque era posible usar hardware diseñado para otros procesadores, abaratando el producto.


Bus serie

En este los datos son enviados, bit a bit y se reconstruyen por medio de registros o rutinas de software. Está formado por pocos conductores y su ancho de banda depende de la frecuencia. Es usado desde hace menos de 10 años en buses para discos duros, unidades de estado sólido, tarjetas de expansión y para el bus del procesador.

HTML

HTML, siglas de HyperText Markup Language («lenguaje de marcado hipertextual»), hace referencia al lenguaje de marcado predominante para la elaboración de páginas web que se utiliza para describir y traducir la estructura y la información en forma de texto, así como para complementar el texto con objetos tales como imágenes. El HTML se escribe en forma de «etiquetas», rodeadas por corchetes angulares (<,>). HTML también puede describir, hasta un cierto punto, la apariencia de un documento, y puede incluir o hacer referencia a un tipo de programa llamado script, el cual puede afectar el comportamiento de navegadores web y otros procesadores de HTML.

HTML también sirve para referirse al contenido del tipo de MIME text/html o todavía más ampliamente como un término genérico para el HTML, ya sea en forma descendida del XML (como XHTML 1.0 y posteriores) o en forma descendida directamente de SGML (como HTML 4.01 y anteriores).

Primeras especificacionesHistoria de HTML

La primera descripción de HTML disponible públicamente fue un documento llamado HTML Tags (Etiquetas HTML), publicado por primera vez en Internet por Tim Berners-Lee en 1991. Describe 22 elementos que incluyen el diseño inicial y relativamente simple de HTML. Trece de estos elementos todavía existen en HTML 4.

Berners-Lee consideraba a HTML una ampliación de SGML, pero no fue formalmente reconocida como tal hasta la publicación de mediados de 1993, por la IETF, de una primera proposición para una especificación de HTML: el boceto Hypertext Markup Language de Berners-Lee y Dan Connolly, el cual incluía una Definición de Tipo de Documento SGML para definir la gramática. El boceto expiró luego de seis meses, pero fue notable por su reconocimiento de la etiqueta propia del navegador Mosaic usada para insertar imágenes sin cambio de línea, que reflejaba la filosofía del IETF de basar estándares en prototipos con éxito. De la misma manera, el boceto competidor de Dave Raggett HTML+ (Hypertext Markup Format) (Formato de Marcaje de Hipertexto), de finales de 1993, sugería estandarizar características ya implementadas, como las tablas.

Marcado HTML

HTML consta de varios componentes vitales, entre ellos los elementos y sus atributos, tipos de data y la declaración de tipo de documento.

Elementos


Los elementos son la estructura básica de HTML. Los elementos tienen dos propiedades básicas: atributos y contenido. Cada atributo y contenido tiene ciertas restricciones para que se considere válido al documento HTML. Un elemento generalmente tiene una etiqueta de inicio (por ejemplo, <nombre-de-elemento>) y una etiqueta de cierre (por ejemplo, </nombre-de-elemento>). Los atributos del elemento están contenidos en la etiqueta de inicio y el contenido está ubicado entre las dos etiquetas (por ejemplo, <nombre-de-elemento atributo="valor">Contenido</nombre-de-elemento>). Algunos elementos, tales como <br>, no tienen contenido ni llevan una etiqueta de cierre. Debajo se listan varios tipos de elementos de marcado usados en HTML.

El marcado estructural describe el propósito del texto. Por ejemplo, <h2>Golf</h2> establece «Golf» como un encabezamiento de segundo nivel, el cual se mostraría en un navegador de una manera similar al título «Marcado HTML» al principio de esta sección. El marcado estructural no define cómo se verá el elemento, pero la mayoría de los navegadores web han estandarizado el formato de los elementos. Puede aplicarse un formato específico al texto por medio de hojas de estilo en cascada.

El marcado presentacional describe la apariencia del texto, sin importar su función. Por ejemplo, <b>negrita</b> indica que los navegadores web visuales deben mostrar el texto en negrita, pero no indica qué deben hacer los navegadores web que muestran el contenido de otra manera (por ejemplo, los que leen el texto en voz alta). En el caso de <b>negrita</b> e <i>itálica</i>, existen elementos que se ven de la misma manera pero tienen una naturaleza más semántica: <strong>enfásis fuerte</strong> y <em>énfasis</em>. Es fácil ver cómo un lector de pantalla debería interpretar estos dos elementos. Sin embargo, son equivalentes a sus correspondientes elementos presentacionales: un lector de pantalla no debería decir más fuerte el nombre de un libro, aunque éste esté en itálicas en una pantalla. La mayoría del marcado presentacional ha sido desechada con HTML 4.0, en favor de hojas de estilo en cascada.

El marcado hipertextual se utiliza para enlazar partes del documento con otros documentos o con otras partes del mismo documento. Para crear un enlace es necesario utilizar la etiqueta de ancla <a> junto con el atributo href, que establecerá la dirección URL a la que apunta el enlace. Por ejemplo, un enlace que muestre el texto de la dirección y vaya hacia nuestra Wikipedia podría ser de la forma: <ahref=”http://www.wikipedia.org”>http://www.wikipedia.org</a>. También se pueden crear enlaces sobre otros objetos, tales como imágenes <a href=”enlace”><img src=”imagen” /></a>.

Atributos

La mayoría de los atributos de un elemento son pares nombre-valor, separados por un signo de igual «=» y escritos en la etiqueta de comienzo de un elemento, después del nombre de éste. El valor puede estar rodeado por comillas dobles o simples, aunque ciertos tipos de valores pueden estar sin comillas en HTML (pero no en XHTML). De todas maneras, dejar los valores sin comillas es considerado poco seguro. En contraste con los pares nombre-elemento, hay algunos atributos que afectan al elemento simplemente por su presencia (tal como el atributo ismap para el elemento img).

Códigos HTML básicos

  • <html>: define el inicio del documento HTML, le indica al navegador que lo que viene a continuación debe ser interpretado como código HTML. Esto es así de facto, ya que en teoría lo que define el tipo de documento es el DOCTYPE, que significa la palabra justo tras DOCTYPE el tag de raíz.
  • <script>: incrusta un script en una web, o llama a uno mediante src="url del script". Se recomienda incluir el tipo MIME en el atributo type, en el caso de JavaScript text/javascript.
  • <head>: define la cabecera del documento HTML; esta cabecera suele contener información sobre el documento que no se muestra directamente al usuario como, por ejemplo, el título de la ventana del navegador. Dentro de la cabecera <head> es posible encontrar:

  • <title>: define el título de la página. Por lo general, el título aparece en la barra de título encima de la ventana.
  • <link>: para vincular el sitio a hojas de estilo o iconos. Por ejemplo:<link rel="stylesheet" href="/style.css" type="text/css">.
  • <style>: para colocar el estilo interno de la página; ya sea usando CSS u otros lenguajes similares. No es necesario colocarlo si se va a vincular a un archivo externo usando la etiqueta <link>.
  • <meta>: para metadatos como la autoría o la licencia, incluso para indicar parámetros http (mediante http-equiv="") cuando no se pueden modificar por no estar disponible la configuración o por dificultades con server-side scripting.
  • <body>: define el contenido principal o cuerpo del documento. Esta es la parte del documento html que se muestra en el navegador; dentro de esta etiqueta pueden definirse propiedades comunes a toda la página, como color de fondo y márgenes. Dentro del cuerpo <body> es posible encontrar numerosas etiquetas. A continuación se indican algunas a modo de ejemplo:
  • <h1> a <h6>: encabezados o títulos del documento con diferente relevancia.
  • <table>: define una tabla.
  • <tr>: fila de una tabla.
  • <td>: celda de una tabla (debe estar dentro de una fila).
  • <a>: hipervínculo o enlace, dentro o fuera del sitio web. Debe definirse el parámetro de pasada por medio del atributo href. Por ejemplo: <a href="http://www.example.com" title="Ejemplo" target="_blank" tabindex="1">Ejemplo</a> se representa como Ejemplo).
  • <div>: división de la página. Se recomienda, junto con css, en vez de <table> cuando se desea alinear contenido.
  • <img>: imagen. Requiere del atributo src, que indica la ruta en la que se encuentra la imagen. Por ejemplo: <img src="./imágenes/mifoto.jpg" />. Es conveniente, por accesibilidad, poner un atributo alt="texto alternativo".
  • <li><ol><ul>: etiquetas para listas.
  • <b>: texto en negrita (etiqueta desaprobada. Se recomienda usar la etiqueta <strong>).
  • <i>: texto en cursiva (etiqueta desaprobada. Se recomienda usar la etiqueta <em>).
  • <s>: texto tachado (etiqueta desaprobada. Se recomienda usar la etiqueta <del>).
  • <u>: Antes texto subrayado. A partir de HTML 5 define porciones de texto diferenciadas o destacadas del resto, para indicar correcciones por ejemplo. (etiqueta desaprobada en HTML 4.01 y redefinida en HTML 5)
La mayoría de etiquetas deben cerrarse como se abren, pero con una barra («/») tal como se muestra en los siguientes ejemplos:
  • <table><tr><td>Contenido de una celda</td></tr></table>.
  • <script>Código de un script integrado en la página</script>.

Nociones básicas de HTML

El lenguaje HTML puede ser creado y editado con cualquier editor de textos básico, como puede ser Gedit en Linux, el Bloc de notas de Windows, o cualquier otro editor que admita texto sin formato como GNU Emacs, Microsoft Wordpad, TextPad, Vim, Notepad++, entre otros. Existen, además, otros editores para la realización de sitios web con características WYSIWYG (What You See Is What You Get, o en español: «lo que ves es lo que obtienes»). Estos editores permiten ver el resultado de lo que se está editando en tiempo real, a medida que se va desarrollando el documento. Ahora bien, esto no significa una manera distinta de realizar sitios web, sino que una forma un tanto más simple, ya que estos programas, además de tener la opción de trabajar con la vista preliminar, tiene su propia sección HTML, la cual va generando todo el código a medida que se va trabajando. Algunos ejemplos de editores WYSIWYG son KompoZer, Microsoft FrontPage o Adobe Dreamweaver.

Combinar estos dos métodos resulta muy interesante, ya que de alguna manera se ayudan entre sí. Por ejemplo, si se edita todo en HTML y de pronto se olvida algún código o etiqueta, simplemente me dirijo al editor visual o WYSIWYG y se continúa ahí la edición o viceversa, ya que hay casos en que resulta más rápido y fácil escribir directamente el código de alguna característica que el usuario desea adherir al sitio que buscar la opción en el programa mismo.

Existe otro tipo de editores HTML llamados WYSIWYM que dan más importancia al contenido y al significado que a la apariencia visual. Entre los objetivos que tienen estos editores es la separación del contenido y la presentación, fundamental en el diseño web. HTML utiliza etiquetas o marcas, que consisten en breves instrucciones de comienzo y final, mediante las cuales se determina la forma en la que debe aparecer en su navegador el texto, así como también las imágenes y los demás elementos, en la pantalla del ordenador.


Toda etiqueta se identifica porque está encerrada entre los signos menor que y mayor que (<>), y algunas tienen atributos que pueden tomar algún valor. En general las etiquetas se aplicarán de dos formas especiales:
  • Se abren y se cierran, como por ejemplo: <b>negrita</b>, que se vería en su navegador web como negrita.
  • No pueden abrirse y cerrarse, como <hr />, que se vería en su navegador web como una línea horizontal.
  • Otras que pueden abrirse y cerrarse, como por ejemplo <p>.
  • Las etiquetas básicas o mínimas son:

<!DOCTYPE HTML> 
<html>
<head>
<title>Ejemplo1</title>
</head>
<body>
<p>ejemplo1</p>
</body>
</html>

Accesibilidad web

El diseño en HTML, aparte de cumplir con las especificaciones propias del lenguaje, debe respetar ciertos criterios de accesibilidad web, siguiendo unas pautas o las normativas y leyes vigentes en los países donde se regule dicho concepto. Se encuentra disponible y desarrollado por el W3C a través de las Pautas de Accesibilidad al Contenido Web 1.0 WCAG (actualizadas recientemente con la especificación 2.0), aunque muchos países tienen especificaciones propias, como es el caso de España con la Norma UNE 139803.

Entidades HTML

Los caracteres especiales como signo de puntuación, letras con tilde o diéresis o símbolos del lenguaje se deben convertir en entidad HTML para mostrarse en un navegador. La siguiente es una lista de caracteres españoles y su correspondiente entidad HTML:

Carácter Entidad HTML Carácter Entidad HTML
á
&aacute;
Á
&Aacute;
é
&eacute;
É
&Eacute;
í
&iacute;
Í
&Iacute;
ó
&oacute;
Ó
&Oacute;
ú
&uacute;
Ú
&Uacute;
ü
&uuml;
Ü
&Uuml;
ñ
&ntilde;
Ñ
&Ntilde;
¡
&iexcl;
¿
&iquest;

Hipermedia

Es el término con el que se designa al conjunto de métodos o procedimientos para escribir, diseñar o componer contenidos que integren soportes tales como: texto, imagen, video, audio, mapas y otros soportes de información emergentes, de tal modo que el resultado obtenido, además tenga la posibilidad de interactuar con los usuarios. La estructura hipermedia de estos contenidos, califica especialmente al conjunto de los mismos, como herramienta de comunicación e interacción humanas. En este sentido, un espacio hipermedia es un ámbito, sin dimensiones físicas, que alberga, potencia y estructura las actividades de las personas, como puede verse en casos como, entre otros: Redes sociales, Plataformas de colaboración online, Plataformas de enseñanza online, etc.

En el plano conceptual, Hipermedia designa a medias que puedan bifurcar o ejecutar presentaciones. Además, que respondan a las acciones de los usuarios, a los sistemas de preordenamiento de palabras y gráficos y puedan ser explorados libremente. Dicho sistema puede ser editado, graficado, o diseñado por artistas, diseñadores o editores. Para Ted Nelson, la idea de que dichas medias manejen múltiples espacios simultánea o secuencialmente, hace que las medias se llame hiper-media. En donde el prefijo hiper, es un término prestado por las matemáticas para describir los espacios multidimensionales. El hipertexto se considera un subconjunto de los hipermedios y ésta a su vez de los multimedios según palabras de Woodhead en 1991. Para Dale en 1997 el hipertexto se utiliza para indicar las conexiones entre los documentos de naturaleza textual e hipermedios se refiere a la conexión entre los documentos de diversos tipos de medios.

En el contexto de la Sociedad Conectada, hipermedia se entiende como una extensión del concepto de Hipertexto, en la cual audio, video, texto e hipervínculos generalmente no secuenciales, se entrelazan para formar un continuo de información e interacción, que puede considerarse como virtualmente infinito desde la perspectiva de Internet.


Entre los tipos de hipermedia se encuentra:
  • Hipertexto.
  • Hiperfilmes.
  • Hipergrama.
El primer sistema hipermedia creado fue el Aspen Movie Map. Actualmente ejemplos de hipermedia son:
  • La World Wide Web.
  • Las películas almacenadas en un DVD.
  • Las presentaciones en Powerpoint o en Flash, o productos informáticos similares.